martes, 29 de enero de 2008

CONSUMABLES


GMAW Circuit diagram. (1) Welding torch, (2) Workpiece, (3) Power source, (4) Wire feed unit, (5) Electrode source, (6) Shielding gas supply.

Electrode
Electrode selection is based primarily on the composition of the metal being welded, but also on the process variation being used, the joint design, and the material surface conditions. The choice of an electrode strongly influences the mechanical properties of the weld area, and is a key factor in weld quality. In general, the finished weld metal should have mechanical properties similar to those of the base material, with no defects such as discontinuities, entrained contaminants, or porosity, within the weld. To achieve these goals a wide variety of electrodes exist. All commercially available electrodes contain deoxidizing metals such as
silicon, manganese, titanium, and aluminum in small percentages to help prevent oxygen porosity, and some contain denitriding metals such as titanium and zirconium to avoid nitrogen porosity.[9] Depending on the process variation and base material being used, the diameters of the electrodes used in GMAW typically range from 0.7 to 2.4 mm (0.028–0.095 in), but can be as large as 4 mm (0.16 in). The smallest electrodes, generally up to 1.14 mm (0.045 in)[10] are associated with the short-circuiting metal transfer process, while the most common spray-transfer process mode electrodes are usually at least 0.9 mm (0.035 in).[11][12]

[edit] Shielding gas
Shielding gases are necessary for gas metal arc welding to protect the welding area from atmospheric gases such as
nitrogen and oxygen, which can cause fusion defects, porosity, and weld metal embrittlement if they come in contact with the electrode, the arc, or the welding metal. This problem is common to all arc welding processes, but instead of a shielding gas, many arc welding methods utilize a flux material which disintegrates into a protective gas when heated to welding temperatures. In GMAW, however, the electrode wire does not have a flux coating, and a separate shielding gas is employed to protect the weld. This eliminates slag, the hard residue from the flux that builds up after welding and must be chipped off to reveal the completed weld.
The choice of a shielding gas depends on several factors, most importantly the type of material being welded and the process variation being used. Pure inert gases such as
argon and helium are only used for nonferrous welding; with steel they do not provide adequate weld penetration (argon) or cause an erratic arc and encourage spatter (with helium). Pure carbon dioxide, on the other hand, allows for deep penetration welds but encourages oxide formation, which adversely affect the mechanical properties of the weld. Its low cost makes it an attractive choice, but because of the violence of the arc, spatter is unavoidable and welding thin materials is difficult. As a result, argon and carbon dioxide are frequently mixed in a 75%/25% to 90%/10% mixture. Generally, in short circuit GMAW, higher carbon dioxide content increases the weld heat and energy when all other weld parameters (volts, current, electrode type and diameter) are held the same. As the carbon dioxide content increases over 20%, spray transfer GMAW becomes increasingly problematic with thinner electrodes.[13]
Argon is also commonly mixed with other gases, such as oxygen, helium, hydrogen, and nitrogen. The addition of up to 5% oxygen (like the higher concentrations of carbon dioxide mentioned above) can be helpful in welding stainless steel or in very thin gauge materials, however, in most applications carbon dioxide is preferred.[14] Increased oxygen makes the shielding gas oxidize the electrode, which can lead to porosity in the deposit if the electrode does not contain sufficient deoxidizers. Argon-helium mixtures are completely inert, and can be used on nonferrous materials. A helium concentration of 50%–75% raises the voltage and increases the heat in the arc. Higher percentages of helium also improve the weld quality and speed of using alternating current for the welding of aluminum. Hydrogen is sometimes added to argon in small concentrations (up to about 5%) for welding nickel and thick stainless steel workpieces. In higher concentrations (up to 25% hydrogen), it is useful for welding conductive materials such as copper. However, it should not be used on steel, aluminum or magnesium because of the risk of hydrogen porosity. Additionally, nitrogen is sometimes added to argon to a concentration of 25%–50% for welding copper, but the use of nitrogen, especially in North America, is limited. Mixtures of carbon dioxide and oxygen are similarly rarely used in North America, but are more common in Europe and Japan.
Shielding gas mixtures of three or more gases are also available. claiming to improve weld quality. Mixtures of argon, carbon dioxide and oxygen are marketed for welding steels. Other mixtures add a small amount of helium to argon-oxygen combinations, these mixtures reportedly allow higher arc voltages and welding speed. Helium is also sometimes used as the base gas, with small amounts of argon and carbon dioxide added. Additionally, other specialized and often proprietary gas mixtures purport even greater benefits for specific applications.
[15]
The desirable rate of gas flow depends primarily on weld geometry, speed, current, the type of gas, and the metal transfer mode being utilized. Welding flat surfaces requires higher flow than welding grooved materials, since the gas is dispersed more quickly. Faster welding speeds mean that more gas must be supplied to provide adequate coverage. Additionally, higher current requires greater flow, and generally, more helium is required to provide adequate coverage than argon. Perhaps most importantly, the four primary variations of GMAW have differing shielding gas flow requirements—for the small weld pools of the short circuiting and pulsed spray modes, about 10 L/min (20 ft³/h) is generally suitable, while for globular transfer, around 15 L/min (30 ft³/h) is preferred. The spray transfer variation normally requires more because of its higher heat input and thus larger weld pool; along the lines of 20–25 L/min (40–50 ft³/h).[16]

No hay comentarios: