The principles of gas metal arc welding began to be developed around the turn of the 19th century, with Humphry Davy's discovery of the electric arc in 1800. At first, carbon electrodes were used, but by the late 1800s, metal electrodes had been invented by N.G. Slavianoff and C. L. Coffin. In 1920, an early predecessor of GMAW was invented by P. O. Nobel of General Electric. It used a bare electrode wire and direct current, and used arc voltage to regulate the feed rate. It did not use a shielding gas to protect the weld, as developments in welding atmospheres did not take place until later that decade. In 1926 another forerunner of GMAW was released, but it was not suitable for practical use.[1]
It was not until 1948 that GMAW was finally developed by the Battelle Memorial Institute. It used a smaller diameter electrode and a constant voltage power source, which had been developed by H. E. Kennedy. It offered a high deposition rate but the high cost of inert gases limited its use to non-ferrous materials and cost savings were not obtained. In 1953, the use of carbon dioxide as a welding atmosphere was developed, and it quickly gained popularity in GMAW, since it made welding steel more economical. In 1958 and 1959, the short-arc variation of GMAW was released, which increased welding versatility and made the welding of thin materials possible while relying on smaller electrode wires and more advanced power supplies. It quickly became the most popular GMAW variation. The spray-arc transfer variation was developed in the early 1960s, when experimenters added small amounts of oxygen to inert gases. More recently, pulsed current has been applied, giving rise to a new method called the pulsed spray-arc variation.[2]
As noted, GMAW is currently one of the most popular welding methods, especially in industrial environments. It is used extensively by the sheet metal industry and, by extension, the automobile industry. There, the method is often used to do arc spot welding, thereby replacing riveting or resistance spot welding. It is also popular in robot welding, in which robots handle the workpieces and the welding gun to quicken the manufacturing process.[3] Generally, it is unsuitable for welding outdoors, because the movement of the surrounding atmosphere can dissipate the shielding gas and thus make welding more difficult, while also decreasing the quality of the weld. The problem can be alleviated to some extent by increasing the shielding gas output, but this can be expensive and may also affect the quality of the weld. In general, processes such as shielded metal arc welding and flux cored arc welding are preferred for welding outdoors, making the use of GMAW in the construction industry rather limited. Furthermore, the use of a shielding gas makes GMAW an unpopular underwater welding process, and for the same reason it is rarely used in space applications.
martes, 29 de enero de 2008
Suscribirse a:
Enviar comentarios (Atom)
No hay comentarios:
Publicar un comentario